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ABSTRACT 

It is shown that all the approximately finite dimensional C*-algebras 

which are not of Type I are isomorphic as Banach spaces. This general- 

izes the matroid case given previously by Arazy. Analogous results are 

obtained for various families of triangular subalgebras of AF C*-algebras. 

In addition the classification of various continua of Type I AF C*-algebras 

is discussed. 

A C*-algebra is approximately finite (or AF) if it is a closed union of finite- 

dimensional C*-subalgebras. Those AF C*-algebras for which the finite- 

dimensional subalgebras can be taken to be full matrix algebras are known as 

matroid C*-algebras. J. Arazy [1] has shown that with the exception of the alge- 

bra 1r of compact operators, which is the unique matroid algebra with separable 

dual, all (infinite-dimensional) matroid C*-algebras are isomorphic as Banach 

spaces. We generalise this by showing that all the AF C*-algebras which are not 

of Type I are isomorphic. In particular we see that  a simple AF C*-algebra is ei- 

ther isomorphic to K or to the Fermion algebra F, the unital matroid C*-algebra 

lim M2~. We also comment on the classification of AF C*-algebras of Type I. 

A similar analysis is given for various distinguished triangular subalgebras of 

AF C*-algebras and it is this non-self-adjoint context that motivated the present 

study. 
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In particular the refinement limit algebras lim (T,~, pk) are all isomorphic to 
. . . . .  

the model algebra T2~ = lim (T,2k, Pk), and the standard limit algebras are all 

isomorphic to the model algebra $2~ = lim (T2~ , ak). From this we are able to 

deduce that all the (proper) alternation algebras are isomorphic. It seems prob- 

able that T2~ and $2~ are not isomorphic. Some evidence in support of this (see 

Remark 2.4) is that there are no "natural" complemented contractive injections 

F ---* $2~ and for this reason the methods of this paper cannot be applied. In 

fact it seems likely that non-self-adjoint subalgebras of AF C*-algebras provide 

an interesting diversity of Banach spaces. This is to be expected in view of the 

analogies that exist between triangular algebras and function spaces. Also, in 

an associated nonselfadjoint context, Arias [3] has recently shown that there are 

nonisomorphic nest subalgebras (perhaps uncountably many) in the trace class. 

The proofs below are straightforward and self-contained. In particular we do 

not require the C*-algebraic classification of the matroid algebras or the AF C*- 

algebras (given in Dixmier [7] and Elliott [8] respectively). The key step in the 

self-adjoint case is to show that if B is an AF C*-algebra whose Bratteli diagram 

has a particular property, which we call the Fermion property, then for any 

other AF C*-algebra A there exists a complemented linear contractive injectiofl 

"y: A ~ B. This injection is obtained by constructing an infinite commuting 

diagram whilst at the same time constructing a commuting system of left inverses 

for the partial injections. This ensures that in the limit the closed space 7(A) is 

complemented in terms of a completely contractive linear map. 

This form of explicit construction lends itself to natural modifications to deal 

with triangular subalgebras of AF C*-algebras. 

As this paper was being prepared Simon Wasserman pointed out to the author 

that the isomorphism of non Type I AF algebras has also been obtained in a 

different way by Kirchberg as a consequence of his work on nuclearly embeddable 

C*-algebras and exact C*-algebras. In fact, Kirchberg deduces that all separable 

nuclear non Type I C*-algebras are isomorphic. The rather deep result that 

leads to this isomorphism is that separable unital nuclear C*-algebras are unitally 

completely isometrically embeddable in the Fermion algebra. The proof of this, 

as well as the simplified proof given by Wasserman [18], is quite involved with 

C*-algebra theory and contrasts markedly with our approach for the simpler case 

of AF C*-algebras. 
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1. AF  algebras wi th  The  Fermion property  

The Fermion algebra (or CAR algebra) is the unital matroid C*-algebra F = 

lim M2~ with Bratteli diagram 

A general AF C*-algebra, with presentation A = lira Ak, has an associated 

Bratteli diagram in which, similarly, multiple edges between two vertices indicate, 

through their multiplicity, the multiplicity of the partial embedding between the 

summands associated with the vertices. We shall say that  the Bratteli diagram 

has the Fermion property  if there is a sequence of vertices vl, v2, . . ,  associated 

with summands of Anl,A~2,..., respectively, with nk an increasing sequence, 

such that there is more than one vertical path between each consecutive pair 

vi, vi+l. That  is, there is a sequence of partial embeddings A ~  --* And+l, with 

nonzero compositions, each of multiplicity at least two. Thus, the Pascal triangle 

Bratteli diagram has the Fermion property, whereas the following diagram does 

not: 
1 

1 1 

J 
2 2 1 

J / 
3 2 1 
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We now show that two AF C*-algebras whose Bratteli diagrams have the 

Fermion property are linearly homeomorphic. The next lemma, which is analo- 

gous to Lemma 2.11 of [1], is the key result required in the proof. 

Let A and B be finite-dimensional C*-algebras with chosen matrix unit systems 

{eij: (i,j) E I} and {fij: (i,j) C J} respectively. Assume that I , J  are block 

diagonal subsets of {1 , . . . ,  m} 2 for some m. Let a = (aij) belong to A. A linear 

map 7: A --~ B is said to be of c o m p r e s s i o n  t y p e  with respect to these systems 

if 7 is a (block diagonal) direct sum of maps of the form a o/3 where ~: A ~ M,  

is given by 

fl((ai/)) = (ak,,k,)'~,t=l, 
C_ I, and where a: Mn --~ B is a multiplicity one algebra where { k l , . . . ,  k,~} 2 

injection of the form 
b n = ( 

where {11,.. . ,  In}: C_ J. If, additionally, { l l , . . .  , in} and { t l , . . . ,  t,~} are ordered 

subsets (ll < 12 etc), then we refer to 7 as an o r d e r e d  c o m p r e s s i o n  t y p e  map .  

Let A = A1 @-" �9 | A~ where A1 , . . . ,  A~ are the matrix algebra summands of A 

and let 7: A -* B be a map of compression type, as above, with 7 = 71 (~" "" O 7p,  

where 71, . . . -7p are the elementary summands of 7. The map "/ has isometric 

restriction to A1 if (and only if) there is a summand 7i which is isometric on A1. 

It follows that 7 is isometric if (and only if) the summands can be reordered and 

relabelled as  (7'/1 ~ " ' "  (~ 7 r )  (~ ( T r + l  (~ " ' "  (~ 7p) SO that 7' = "Yl �9 ".. �9 % is a 

(multiplicity one) algebra injection of A into B. With such a relabelling there 

is an associated contractive left inverse map 5: B --* A, of compression type, 

satisfying 5 o 7 : idA. The map 5 is the composition of compression onto the 

range of 7', followed by the inverse map of 7' restricted to its range. 

Changing notation, let A = lim (Ak, Ck), and B = lim (Bk, Ck) be presenta- 

tions of the AF C*-algebras A and B where the maps Ck and Ck are isometric 

C*-algebra injections. Assume that the matrix unit systems {e~: (i,j) E Ik} 
and {f~: (i,j) E Jk} have been chosen for Ak and Bk respectively, so that  each 

map Ck and Ck maps matrix units to sums of matrix units, and, for the mo- 

ment, assume that A is unital and that the embeddings Ck are unital. Assume 

furthermore that  the Bratteli  diagram for the system {Bk, ~bk} has the Fermion 

property. By composing maps, forming a subsystem from such compositions, and 

relabelling, we may assume that  Bk = M~, G B~ and that the partial embedding 

of Ck from M~ k into M,~+~ has multiplicity at least two. 
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LEMMA 1.1: With  the assumptions above there is a commut ing  diagram 

A1 r * A2 ~2 , 

Bn 1 01 02 �9 Un2 

where each m a p  Vk is an isometric linear map  o f  compression type  relative to 

the given matr ix  unit system,  and where 01,02, . . .  are composit ions o f  the given 

embeddings  ~1, ~2 , . . . .  Furthermore there are linear contractions 5k : B ~  --* Ak,  

o f  compression type, satisfying 5k o ~k = id, such that  the diagram 

A1 ~ , A2 ~2 , 

,l -T 
B n l  ol 02 * Bn2 * 

commutes .  In particular there exists an isometric injection ~: A --~ B and a 

contractive m a p  ~: B --~ A such that  "y o 6 is a contractive projection onto the 

range of ?. 

Proof: Using the Fermion property for B choose nl  large enough so that  there 

exists a multiplicity one linear isometry ~/1:A1 ~ B,~I, of compression type, with 

range in the summand M~ 1 of the decomposition Bnl Mr1 B r = | nl" We may as- 

sume that  ~1 has the form ")'l(a) ~- [a(~0.] @{0},  that  is that  the partial  embedding 

of 3'1 from A1 into M~ 1 has a proper zero summand 0,. (We indicate the distin- 

guished first summand of Bn2 with square brackets and the remaining summands 

are grouped in braces.) For n2 > nl ,  to be chosen, the composed map 01: Bnl --* 

B ,  2 has partial  embeddings (71: Mr~ ~ Mr 2, TI: B '  ~ M~ 2, T2: B,~ --~ B '  nl n2 
and by relabelling the matr ix  units of M ~  we may assume that  a l  is of s tandard 

type, that  is, 

a,(b)  = b • . . .  �9 b ~) 0 (b appearing t times). 

(The zero summand may be absent.) Using the Fermion property hypothesis we 

may choose n2 so that  t is arbitrarily large. Note that  the composition 01 o 71 

has the form 
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Consider now the given map r ---* A~. Let 

A1 = AI ,1  G - . "  (~ Al,p, A2 --= A2,1 (~ " ' "  (~ A2,q 

be the matrix algebra decompositions. Relabelling matrix units of A2 we may 

assume that r is given in a standard form with respect to the matrix unit 

systems, that is, 

01 :AI ,1G "'" �9 Al,p -4 A2,1G "'" �9 A2,q 

where the summand of r  0 " "  O ap) in the matrix summand A2,t is 

kl,t kp,t 
ea l )e . - |  ( E  eap), 

1 1 

with the understanding that some of these summands may be absent. The integer 

k~,t, for 1 < s < p, 1 _< t _~ q, is the multiplicity of the partial embedding for r 

from A l , s  t o  A2,t. 
We now construct ~/2:A2 -4 Bn2 as an isometric linear multiplicity one injec- 

tion of compression type, as suggested by the following diagram: 

r 
a ' [ E 1 , 1 G ' ' "  C) E P ,  1] O ' ' "  @ [El,q @' ' "  O Ep,q]  

[a, 0.1, o , [ 2(a �9 0.) ,   1(0)1 �9 
Using the Fermion property choose n2 large enough so that 

t >_ ki , l  + " " + ki,q , l < i ~_ p. 

These inequalities guarantee that there exists a one to one correspondence of 

the summands of r with s o m e  of the appropriate nonzero summands of 

a l  (a @ 0,). The point of this observation is that there is a natural multiplic- 

ity one algebra injection "f~ from A2 to M~ 2 (of compression type) which respects 

this correspondence. Construct "/2 by adding extra summands to ~f~ to obtain a 

linear isometry, of compression type, satisfying 7 2 ( r  = 01(71(a))  for all a 

in A1. Since r is isometric this is possible. 

Define 61 = .y~-i o 711 where ~1 is the compression map onto the range of 71, 

noting that  .y~-I is well-defined on this range. Similarly define 62 in terms of "~2. 

Thus, 62 = ('y2) -1 o ~72 where ~2 is the compression onto the range of "Y2. To see 
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the impor t an t  equali ty r o 51 = 52 o 01, let b E Bnl ,  and let ~l(b) = [a @ 0.] G 0. 

By the const ruct ion of ~2 and 52 we have 

62(01(5)) -- 52(01(771(b))). 

This  is because the domain  of 52 is subordinate to the nonzero s u m m a n d s  of 

al(a �9 0.) ,  and 01(b - ~l(b)) vanishes on these summands .  Thus  

62(01(5)) ---- 62(01(~']1(b))) -- 62(01([a �9 0.]  �9 0)) --  r  --  r  

Repea t ing  the  a rguments  above obta in  inductively isometric  maps  "Y3, "/4, �9 �9 wi th  

dist inguished contract ive  left inverses 53, 64, . . . .  Indeed,  note t ha t  after rela- 

belling the ma t r ix  units  of Bn2 the m a p  ~/2:A2 ---* Mr2 O B' can be wr i t ten  in ~2 

the form 

a ---* [a �9 0 (~ "Y2,1(a)] | (~/2,2(a)), 

and so the const ruct ion of ~ ,  53, ~3 is obta ined  in exact ly  the same way as 

"y~, 52, ~2, | 

The  l e m m a  shows tha t  there is a complemented  isometric  linear injection A --~ 

B. If  A is not uni ta l  then  A has a complemented  isometric  linear injection into 

its uni t isat ion A ~, and so the nonunital  case follows on considerat ion of the 

composi t ion A ~ A ~ ~ B. 

The  next  l e m m a  also appears  in Arazy ' s  paper .  For completeness  we give a 

proof. Wri te  X ~ Y if X and Y are l inearly homeomorphic  Banach  spaces. 

LEMMA 1.2: F ,~ co(F). 

Proof: Realise F as the direct l imit l im (M2 k, pk) where pk: a -~ a |  Define 

a na tu ra l  injection ~: co(F) --* F which is suggested by the following inclusion 

diagram.  

F D 
I 

F 
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More precisely let Fo be the subspace lim (M~ of codimension one given by 

the subsystem determined by the subspaces 

M~ = {(aij) �9 M2~: a2~,2~ = 0}. 

Define co(F) --* Fo as follows. Identify the first copy of F in co(F) = F @ F @. . .  

with plFopl where Pl = e1,1 in M2. (Identify e1,1 with its image in the limit.) 

Identify the second copy with p2FoP2, where P2 = e33 in M2~, and so on. The 

resulting inclusion co(F) ~ F has range which is the range of the projection 

E: Fo Fo given by E(a) " k --* = hmk(~-~j=l pjapj).  Thus co(F) is complemented in 

Fo, and hence in F. Thus F ,~ co(F) @ X ~ co(F) @ co(F) @ X ..~ co(F) | F 

co(F). I 

The proof of the next theorem now reduces to a routine application of the 

Pelczynski decomposition method. 

THEOREM 1.3: Let A and B be A F  C*-algebras given by direct systems whose 

Bratteli diagrams have the Fermion property. Then A and B are isomorphic as 

topological vector spaces. 

Proob We may assume that  B = F.  By Lemma 1.1, and the remarks concerning 

the unital case, there exist contractive injective complemented maps A ~ F and 

F --~ A. Thus, by Lemma 1.2, 

co(A) ~ co(F) ~ F ~ A. 

Hence, just as with F,  we have A .~ co(A)@Y ~ co(A)@co(A)@ Y ~ co(A)@A 

co(A). 
Consider now the fact that A ~ F @ Z for some closed subspace Z of A, and 

obtain A ~ F @ Z .~ co(F) O Z ~ co(F)•  F G Z ~ F | A. Similarly, F ..~ F (~ A, 

and so F ~ A. I 

Let A = lira Ak be an (infinite-dimensional) AF C*-algebra, with a corre- 

sponding Bratteli diagram, which is simple. This means that for each vertex v of 

the diagram, at level k, there is a lower level m such that there exist downward 

paths from v to all the vertices at level m. (See Bratteli [5].) In particular any 

two vertices at a given level have downward paths that meet in a common vertex. 

This weaker property is precisely the Bratteli diagram criterion for the triviality 

of the centre of A. Suppose additionally, that the Bratteli diagram fails to have 
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the Fermion property. Then there must exist a vertex with a unique downward 

path. For otherwise there is repeated branching and convergence characteristic 

of the Fermion property. 

The unique downward path determines a subsystem of A which defines a sub- 

algebra J which is isomorphic to/C or M.  for some n. Since J is in fact an ideal, 

and A is simple, it follows that  A =/C. Thus we have obtained 

COROLLARY 1.4: Let A be a simple (infinite-dimensional) approximately finite 

C*-algebra. Then A .~ ~2 or A ..~ F. 

A C*-algebra is said to be of Type I if its star representations generate Type I 

von Neumann algebras. Also it is known that  this is equivalent to the apparently 

weaker assertion that  factorial star representations are Type I. (See, for example, 

[9].) Using this we can strengthen the last corollary. 

COROLLARY 1.5: Let A be an approximately finite C*-alegbra which is not 

Type  I. Then A is isomorphic to F as a linear topological vector space. 

Proo~ Let A -- lim Ak, with Bratteli diagram without the Fermion property. 

We show that  the factorial representations of A are Type I. Note first that if 

~r: A --~ L (H)  is a factorial representation, then ker 7r is an ideal, and A~ ker 7r is 

an AF C*-algebra with Bratteli diagram obtained as a subdiagram of the diagram 

for A. (See Bratteli  [5].) Since this subdiagram also fails to have the Fermion 

property we may as well assume that  ker 7r = {0}. With this assumption it follows 

that  the centre of A must be trivial. By the argument preceding Corollary 4 it 

follows that  A possesses an ideal which is isomorphic to/C and which is associated 

with a vertex of the diagram that has a unique descending path. Let p be a 

minimal projection in the matrix summand corresponding to this vertex. Then 

p is minimal in A, and so ~r(p) is minimal in ~r(A)". Thus the factor ~r(A)" is 

Type I. | 

TYPE I AF C*-ALGEBRAS. We comment on the isomorphism types of the 

(infinite dimensional) Type I AF C*-algebras. 

In the separable dual case the following three algebras present themselves: 

(i) co, the space of diagonal compact operators, 

(ii) 7~ : (E~=I  @Mk)co, 

(iii) /(4 the compact operators, 



102 S .C .  P O W E R  Isr. J. Math.  

and they are known to be pairwise nonisomorphic. See Arazy and Lindenstrauss 

[2]. We can distinguish (i) from (ii) and (iii) by noting that  all bounded maps 

from Co to g2 are 2-summing. A simple proof can be found in Pisier's notes 

[13]. On the other hand matrix realisations provide "top row" maps /C --+ g2, 

T/--+ g2 which are not 2-summing. Alternatively, it can be seen in Hamana [11] 

and Chu and Iochum [6] that  (i) has the Dunford Pettis property whereas (ii) 

and (iii) do not. To distinguish 7~ and/C one can note that  the first space has a 

dual space with the Schur property, (that weakly convergent sequences are norm 

convergent) whereas the trace class operators do not. See [2], [11] and [6] for 

further details. 

If an AF C*-algebra has a separable dual space then it is easy to see that  

it does not have the Fermion property and this limits the possibilities for the 

type of Bratteli diagram. The Bratteli diagrams in this case fall naturally into 

three types, namely, Type (i), in which there is a uniform bound on the sizes of 

the matrix summands, Type (ii), in which for every path in the diagram there 

is a uniform bound on the sizes of the associated summands, and Type (iii), 

being the rest. In the particular context of a diagram with finite width the 

associated algebra has a finite composition series and from this it can be shown 

to be isomorphic to /C as a Banach space. 

Bessaga and Pelczynski [4] have classified the spaces C(S) with S countable. 

For each isomorphism type there is a countable ordinal a with C(S) ~ C(a), and 

C(~) ~ C(c~) if and only if a _< ~ < a ~ or ~ _< a < j3 ~. In particular there is 

a continuum of isomorphism types of abelian AF C*-algebras with diagrams of 

type (i). One would expect there to be similar continua for the algebras whose 

diagrams are of type (ii) and type (iii). 

Turning to the algebras whose dual space is not separable there are, in the first 

instance, six natural C*-algebras to consider. 

(iv) C(K), with K a Cantor space, 

(v) C(K) @ ~, 
(vi) C(K) | Ti, 

(vii) C(K) ~ IC, 

(viii) (C(K) @ T~) G 1C, 

(ix) C(K) | IC. 
These algebras are associated with six different types of Bratteli diagram. 

Thus, all diagram types have uncountably many paths. For Type (iv) there 
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is a uniform bound on the sizes of all matrix summands. For Type (v) there is 

no uniform bound, but for each n there are at most countably many paths on 

which the matrix sizes exceed n, and there is no path with unbounded matrix 

sizes. A Type (vi) diagram is not of Type (iv) or (v) and there are no paths with 

unbounded matrix sizes. For Type (vii) there do exist paths of unbounded matrix 

size and for some n there are at most countably many paths whose matrix sizes 

exceed n. A Type (viii) diagram has only countably many "unbounded paths", 

but for each n there are uncountably many paths whose matrix sizes exceed n. 

A Type (ix) diagram has uncountably many unbounded paths. 

It seems plausible that isomorphic AF C*-algebras have Bratteli diagrams of 

the same diagram type, and within some of these diagram types ((v), (vii), (viii)) 

one would expect there to be added ordinal type complexities as in the separable 

dual case. For example one might expect there to be a continua of Banach space 

types of the form C(K) | (C(a) | IE). 

With regard to the duals of AF C*-algebras, Wojtaszczyk has shown that there 

are just three separable duals, namely the duals of the algebras (i), (ii), and (iii). 

It seems reasonably to conjecture that there are precisely nine dual spaces of 

Type I AF C*-algebras. 

2. T r i angu l a r  subalgebras 

There are three well-known families of triangular subalgebras of UHF 

C*-algebras, namely the refinement algebras lira (Tn~, Pk), the standard algebras 

lim (T~,  ak) and the alternation algebras, lim (T,~k, ak). The (unital) embed- 

dings determining these limits have the form 

pk( (aq ) )  = ( a q I . ) ,  ~k(a)  = I .  | a, 

where tk is the multiplicity of the embedding, and in the alternation case ak 

alternates between these two types. We shall prove the following theorem. 

THEOREM 2.1: 

(i) The standard limit algebras are isomorphic as Banach spaces. 

(ii) The refinement limit algebras are isomorphic as Banach spaces. 

(iii) The alternation limit algebras are isomorphic as Banach spaces. 

Another well-known class consists of the various "refinement with twist" limits 

lirn(Tnk, rk), where rk agrees with Pk on all the standard matrix units eq of T ~ ,  
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with the exception of those superdiagonal matrix units in the last column. For 

these 

where uk is a permutation unitary in Mtk. It was shown in Hopenwasser and 

Power [12] that these algebras provide uncountably many algebra isomorphism 

classes, distinct from the refinement limits. On the other hand we have 

THEOREM 2.2: I f  A is a refinement with twist algebra, as above, then as a 

Banach space, A is isomorphic to the model refinement algebra T2oo. 

The algebras above are examples of (canonical regular) triangular subalgebras 

of UHF C*-algebras. In a different direction one can generalize the standard 

embedding limit algebras by considering ordered Bratteli diagrams ([15], [14]). 

A typical such embedding has the form 

Z:Tq, e . . . e T q .  --, Tp, e . . .  e 

where 
tl tr 

1~: al ~ ' " ~ a s  ~ ( Y ~ b l , j )  ~ " ' ~  ( Z  ~br,j) 
j=l j=l 

and where each bk,~ is one of the summands a l , . . . ,  as. The summations here 

mean block diagonal direct sums. In the nonunital case one also allows the bk,t 

to be zero summands. For a simple example, consider the embedding 31 from 

T2 OT3 OT4 to T7 GT6 | given by 

~ l : aObOc- -*  (bOc)  ~ (aGc)  e (aOb) .  

This embedding is not inner conjugate to 

j32: a |  ~ (b@c) @ ( cO a )  ~ (aOb)  

and the difference can be indicated by ordered Bratteli diagrams. A consequence 

of this diversity is the existence of uncountably many nonisomorphic limit alge- 

bras with the same generated C*-algebra. Once again, however, they correspond 

to a unique Banach space type. 

THEOREM 2.3: Let A be a triangular limit algebra determined by an ordered 

Bratteli diagram which has the Fermion property. Then, as a Banach space, A 

is isomorphic to the model algebra S2~. 
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Recall the definition of a linear map 7: Mn ~ Mm which is of ordered compres- 

sion type  and note that  such a map has a restriction "y: Tn --* Tin. Using direct 

sums of such maps define ordered compression type  maps  Tq --* Tpl ~ .  . .| and 

use these to define general ordered compression type  maps  "~ = Tql 0 " "  �9 | Tq, --~ 

Tpl G " "  �9 T p .  If 7(a l  ~) " -  �9 as) has at least one complete summand ai, for 

each i, then "y is isometric. In this case it follows, as in section 2, that  7 has an 

associated left inverse. 

The Proo f  o f  Theorem 2.3: Note first that  the conclusions of Lemma 1.1 hold in 

the triangular context wherein we make the following new assumptions: 

A = l im(Ak,  ~k)  and B = lim(Bk, ~k) are limit algebras determined by ordered 

Bratteli diagrams and the diagram for B has the Fermion property. To adapt  

the proof we use ordered compression maps in place of compression maps. The 

argument is virtually the same but notationally awkward since we cannot make 

simplifying reorderings of summands by relabelling matr ix  units in the codomain. 

The first occasion for this is the expression for 01 o "~l(a). (The map "Yl can be 

chosen to be of ordered compression type.) However 01 o "yl(a) is an ordered 

direct sum such that ,  in the first summand T~ 2 of Bn2, for suitably large n2, 

there appear  many summands which are copies of the summands of a. Thus, 

as before, there is an association of the summands of r with sorae of the 

summands of 01 o "~l(a), if nl is large enough. However we assume additionally 

that  this association respects the order in which summands of r appear  in 

each summand A2,i. As before define a multiplicity one injection "y~ of ordered 

compression type, from A2 t o  Bn2 , which respects this correspondence. The ex- 

tension 72 of ~/~ and the left inverse 62 of "y~ (and ~ )  are defined as before, and 

once again the desired commuting diagrams follow upon iterating this procedure. 

In the case that  A is nonunital obtain a complemented unital isometric injection 

A --* B by considering the unitisation of A. 

The argument of Lemma 1.2 also serves to give a natural  complemented injec- 

tion c0($2~) ~ $2~. (The diagram of Lemma 1.2, however, is not appropriate 

for s tandard embeddings.) The remainder of the proof follows as before. | 

The  proof  of  Theorem 2.1 (ii): This follows a similar scheme. Let A --- 

l im(Ak,r  be a refinement limit algebra and let T2~ = l im(Bk,r  be the 

2 ~ refinement limit algebra. To obtain the appropriate version of Lemma 1.1 

first choose nl  large enough so that  there is a multiplicity one ordered compres- 
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sion type map ~fl: A1 --* Bnl given by ~l(a) = a ~) 0 (block diagonal direct 

sum). The matrix e l (a )  has the form (aijXt) where t is the multiplicity of r 

Choose 91: Bnl --* B,2, a composition of consecutive maps r r  so that  the 

multiplicity of 91 exceeds that of r Thus 

= ( a , J , )  

and 

O l ( " / l ( ( a i j ) ) )  : (aijls) �9 0 

where s > t. There is now natural multiplicity one isometric (algebra) injection 

")'~: A2 ---* Bn2 with the property that 

"t~(aijlt) = (a,j(It (~ 0s-t)) �9 O. 

This (as before) does not yet give a commuting square. Nevertheless we can 

add multiplicity one summands of ordered compression type to create ~'2, an 

extension of ~/~, so that  ~/(aijIt) = (aijls) 0 O, and thus we obtain the first 

commuting square of Lemma 1.1 in this context. Furthermore, ~/x has a natural 

left inverse 61, and, as before, ?~ can be used in the definition of a left inverse 

62 for ~2, which extends 61 in the obvious way. The construction of the desired 

maps ?3, 63, ~/4, 64,. . .  is obtained similarly. 

We have T2= ~ Co(T2=), by the argument of Lemma 1.2 (the diagram is 

appropriate this time), and the proof is completed as before. | 

The proof  of  Theorem 2.1 (iii): Let s and r be the generalised integers associated 

with the triangular limit algebras 88 and T~. Consider the subalgebra $8 * T~ of 

B8 | B ,  given by 

+ (S~174 

where B8 = C*($8) and Br = C*(T~) are the generated C*-algebras, and where 

S ~ is the strictly upper triangular subalgebra of $8. In the terminology of [16] 

and [17] this algebra is the lexicographic product of the ordered pair 88, T~. If 

s and r are not finite then this product coincides with the proper alternation 

algebra for the pair r, s. This formula forms the basis of the proof. 

Note first that  $8 * ~ is bicontinuously isomorphic to the e ~ direct sum of the 

component spaces above. Also $8 N $~ is C*-algebraically isomorphic to C(K) ,  
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where K is a Cantor space. From the linear isomorphism T~ ~ T2~ we obtain 

It  remains then to show that  S ~ | B~ and S2~ | B2~ are bicontinuously isomor- 

phic. However the maps of Lemma 1.1 and its non-self-adjoint variants respect 

tensor products. For example, the isometric map 7: A --~ B of Lemma 1.1 also 

provide complemented isometric injections 7 | id: A | D --* B | D, where D is a 

closed subspace of an AF C*-algebra (for example) and the tensor product is the 

injective, or spatial, tensor product. And so we obtain the needed equivalences 

and the proof follows. | 

The proof of Theorem 2.2: Let A = lirn(Tn~, Tk) be a refinement with twist limit 

algebra. Let Ao = lim(T~- k, Tk) = lim(T~- k , Pk) where T ~  = span(e~,j: j < gk} .  

Also, let T = lirn(Tn k, Pk) be the associated refinement algebra. Then T~ k 
2 T~-~ @ g,~k" Tha t  is, the map 

a --* a(1 - e~k,~k) q) aenk,nk 

is a bicontinuous linear isomorphism to the go~ direct sum. From the commuting 

diagram 
T~q'I T1 "r2 

l 1 
T ;  | l 2 n~ , T ~  | 12 

n 2  

we obtain a bicontinuous isomorphism A ~ Ao | g2. Similarly T ,.~ A0 �9 g2 and 

so the theorem now follows from Theorem 2.1. | 

Remark 2.4: With respect to injections which map matr ix  units to sums of 

matr ix  units the Banach space 82or is not as injective as T2~. More specifically 

if r M2 ~ Tin1 and r Mn -* Tin2 are isometric linear maps which map  matr ix  

units to sums of matr ix  units, and if i: M2 ~ Mn is a unital C*-algebra injection, 

and if r  o i = a o r then it can be shown that  2n _< ml .  In particular there is 

an obstacle to constructing an injection F ~ $2~ along the lines of the proof 

of Lemma 1.1. This suggests that  there are quite possibly no complemented 
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injections of the Fermion a lgebra  in 82~r whereas it is clear t ha t  there are such 

injections for T2~. 
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